src.visualise.visualise_utils
Utility functions, classes, and constants for creating figures and tables
Functions
|
Shade a color map by given alpha value (can be used in color bars etc) |
|
Appends empty rows to a dataframe corresponding with every second of the count-in where no notes were played. |
|
Helper function to bootstrap the mean difference between two arrays (a1, a2). |
|
Add a vertical breaks into two axis to show change in scale |
|
Create a normalised cmap between a minimum, median, and maximum value. |
|
Create a folder to store the plots, with optional subdirectory. |
|
Creates a scalar colourbar object to be placed on a figure |
|
Create an array of axes with unequal numbers of plots per row/column Returns an array that can be indexed in the same way as the array normally returned by plt.subplots() |
Converts a raw p-value into asterisks, showing significance boundaries. |
|
Adds additional rows to a tempo slope dataframe, used when upscaling video FPS. |
|
|
Try and load models from disc |
|
Decorator applied to any plotting function. |
|
Resamples an individual performance dataframe to get mean of every second. |
Classes
|
Base plotting class from which others inherit |
- class src.visualise.visualise_utils.BasePlot(**kwargs)
Bases:
object
Base plotting class from which others inherit
- src.visualise.visualise_utils.alpha_func(pal) ListedColormap
Shade a color map by given alpha value (can be used in color bars etc)
- src.visualise.visualise_utils.append_count_in_rows_to_df(df_avg_slopes: DataFrame, time_col: str = 'elapsed') DataFrame
Appends empty rows to a dataframe corresponding with every second of the count-in where no notes were played. Input dataframe should be in the format returned by average_bpms (i.e. average BPM across performers per second) Used when creating videos of tempo slopes.
- src.visualise.visualise_utils.bootstrap_mean_difference(a1: Series, a2: Series, quantile: float = 0.025, n_boot: int = 10000)
Helper function to bootstrap the mean difference between two arrays (a1, a2). Number of bootstraps is given by the N_BOOT constant if not provided. Quantile is set to 2.5, for 95% confidence intervals.
- src.visualise.visualise_utils.break_axis(ax1: Axes, ax2: Axes, d: float = 0.015) None
Add a vertical breaks into two axis to show change in scale
- src.visualise.visualise_utils.create_normalised_cmap(slopes: list) TwoSlopeNorm
Create a normalised cmap between a minimum, median, and maximum value.
- src.visualise.visualise_utils.create_output_folder(out)
Create a folder to store the plots, with optional subdirectory. Out should be a full system path.
- src.visualise.visualise_utils.create_scalar_cbar(norm: TwoSlopeNorm) ScalarMappable
Creates a scalar colourbar object to be placed on a figure
- src.visualise.visualise_utils.get_gridspec_array(fig: Optional[Figure] = None, ncols: int = 2) array
Create an array of axes with unequal numbers of plots per row/column Returns an array that can be indexed in the same way as the array normally returned by plt.subplots()
- src.visualise.visualise_utils.get_significance_asterisks(p: float) str
Converts a raw p-value into asterisks, showing significance boundaries.
- src.visualise.visualise_utils.interpolate_df_rows(df: DataFrame) DataFrame
Adds additional rows to a tempo slope dataframe, used when upscaling video FPS.
- src.visualise.visualise_utils.load_from_disc(output_dir: str, filename: str = 'phase_correction_mds.p') list
Try and load models from disc
- src.visualise.visualise_utils.plot_decorator(plotter: callable)
Decorator applied to any plotting function. Used to create a folder, save plot into this, then close it cleanly and exit.
- src.visualise.visualise_utils.resample(perf: DataFrame, col: str = 'my_onset', resample_window: str = '1s') DataFrame
Resamples an individual performance dataframe to get mean of every second.